661 research outputs found

    Dynamic spin Jahn-Teller effect in small magnetic clusters

    Full text link
    We study the effect of spin-phonon coupling in small magnetic clusters, concentrating on a S=1/2 ring of 4 spins coupled antiferromagnetically. If the phonons are treated as classical variables, there is a critical value of the spin-phonon coupling above which a static distortion occurs. This is a good approximation if the zero point energy is small compared to the energy gain due to the distortion, which is true for large exchange interactions compared to the phonons energy (JωJ\gg\hbar\omega). In the opposite limit, one can integrate out the phonon degrees of freedom and get an effective spin hamiltonian. Using exact diagonalizations to include the quantum nature of both spins and phonons, we obtain the spectrum in the whole range of parameters and explicit the crossover between the classical and quantum regimes. We then establish quantitatively the limits of validity of two widely used approaches (one in the quantum and one in the classical limits) and show that they are quite poor for small magnetic clusters. We also show that upon reducing ω/J\hbar\omega/J the first excitation of a 4-site cluster becomes a singlet, a result that could be relevant for Cu2_2Te2_2O5_5Br2_2

    On X-ray-singularities in the f-electron spectral function of the Falicov-Kimball model

    Full text link
    The f-electron spectral function of the Falicov-Kimball model is calculated within the dynamical mean-field theory using the numerical renormalization group method as the impurity solver. Both the Bethe lattice and the hypercubic lattice are considered at half filling. For small U we obtain a single-peaked f-electron spectral function, which --for zero temperature-- exhibits an algebraic (X-ray) singularity (ωα|\omega|^{-\alpha}) for ω0\omega \to 0. The characteristic exponent α\alpha depends on the Coulomb (Hubbard) correlation U. This X-ray singularity cannot be observed when using alternative (Keldysh-based) many-body approaches. With increasing U, α\alpha decreases and vanishes for sufficiently large U when the f-electron spectral function develops a gap and a two-peak structure (metal-insulator transition).Comment: 8 pages, 8 figures, revte

    Tracking spin and charge with spectroscopy in spin-polarised 1D systems

    Full text link
    We calculate the spectral function of a one-dimensional strongly interacting chain of fermions, where the response can be well understood in terms of spinon and holon excitations. Upon increasing the spin imbalance between the spin species, we observe the single-electron response of the fully polarised system to emanate from the holon peak while the spinon response vanishes. For experimental setups that probe one-dimensional properties, we propose this method as an additional generic tool to aid the identification of spectral structures, e.g. in ARPES measurements. We show that this applies even to trapped systems having cold atomic gas experiments in mind.Comment: 5 pages, 4 figure

    Kinks in the electronic dispersion of the Hubbard model away from half filling

    Full text link
    We study kinks in the electronic dispersion of a generic strongly correlated system by dynamic mean-field theory (DMFT). The focus is on doped systems away from particle-hole symmetry where valence fluctuations matter potentially. Three different algorithms are compared to asses their strengths and weaknesses, as well as to clearly distinguish physical features from algorithmic artifacts. Our findings extend a view previously established for half-filled systems where kinks reflect the coupling of the fermionic quasiparticles to emergent collective modes, which are identified here as spin fluctuations. Kinks are observed when strong spin fluctuations are present and, additionally, a separation of energy scales for spin and charge excitations exists. Both criteria are met by strongly correlated systems close to a Mott-insulator transition. The energies of the kinks and their doping dependence fit well to the kinks in the cuprates, which is surprising in view of the spatial correlations neglected by DMFT.Comment: 13 pages, 15 figure

    Thermodynamic properties of the two-dimensional S=1/2 Heisenberg antiferromagnet coupled to bond phonons

    Full text link
    By applying a quantum Monte Carlo procedure based on the loop algorithm we investigate thermodynamic properties of the two-dimensional antiferromagnetic S=1/2 Heisenberg model coupled to Einstein phonons on the bonds. The temperature dependence of the magnetic susceptibility, mean phonon occupation numbers and the specific heat are discussed in detail. We study the spin correlation function both in the regime of weak and strong spin phonon coupling (coupling constants g=0.1, w=8J and g=2, w=2J, respectively). A finite size scaling analysis of the correlation length indicates that in both cases long range Neel order is established in the ground state.Comment: 10 pages, 13 figure

    Optimized pulses for the perturbative decoupling of spin and decoherence bath

    Full text link
    In the framework of nuclear magnetic resonance, we consider the general problem of the coherent control of a spin coupled to a bath by means of composite or continuous pulses of duration τp\tau_\mathrm{p}. We show explicity that it is possible to design the pulse in order to achieve a decoupling of the spin from the bath up to the third order in τp\tau_\mathrm{p}. The evolution of the system is separated in the evolution of the spin under the action of the pulse and of the bath times correction terms. We derive the correction terms for a general time dependent axis of rotation and for a general coupling between the spin and the environment. The resulting corrections can be made vanish by an appropriate design of the pulse. For π\pi and π/2\pi/2 pulses, we demonstrate explicitly that pulses exist which annihilate the first and the second order corrections even if the bath is fully quantum mechanical, i.e., it displays internal dynamics. Such pulses will also be useful for quantum information processing.Comment: 9 pages, 7 figures. Published versio

    Peierls transition in the presence of finite-frequency phonons in the one-dimensional extended Peierls-Hubbard model at half-filling

    Full text link
    We report quantum Monte Carlo (stochastic series expansion) results for the transition from a Mott insulator to a dimerized Peierls insulating state in a half-filled, 1D extended Hubbard model coupled to optical bond phonons. Using electron-electron (e-e) interaction parameters corresponding approximately to polyacetylene, we show that the Mott-Peierls transition occurs at a finite value of the electron-phonon (e-ph) coupling. We discuss several different criteria for detecting the transition and show that they give consistent results. We calculate the critical e-ph coupling as a function of the bare phonon frequency and also investigate the sensitivity of the critical coupling to the strength of the e-e interaction. In the limit of strong e-e couplings, we map the model to a spin-Peierls chain and compare the phase boundary with previous results for the spin-Peierls transition. We point out effects of a nonlinear spin-phonon coupling neglected in the mapping to the spin-Peierls model.Comment: 7 pages, 5 figure

    Density-matrix renormalisation group approach to quantum impurity problems

    Full text link
    A dynamic density-matrix renormalisation group approach to the spectral properties of quantum impurity problems is presented. The method is demonstrated on the spectral density of the flat-band symmetric single-impurity Anderson model. We show that this approach provides the impurity spectral density for all frequencies and coupling strengths. In particular, Hubbard satellites at high energy can be obtained with a good resolution. The main difficulties are the necessary discretisation of the host band hybridised with the impurity and the resolution of sharp spectral features such as the Abrikosov-Suhl resonance.Comment: 16 pages, 6 figures, submitted to Journal of Physics: Condensed Matte

    Dynamical Mean-Field Theory

    Full text link
    The dynamical mean-field theory (DMFT) is a widely applicable approximation scheme for the investigation of correlated quantum many-particle systems on a lattice, e.g., electrons in solids and cold atoms in optical lattices. In particular, the combination of the DMFT with conventional methods for the calculation of electronic band structures has led to a powerful numerical approach which allows one to explore the properties of correlated materials. In this introductory article we discuss the foundations of the DMFT, derive the underlying self-consistency equations, and present several applications which have provided important insights into the properties of correlated matter.Comment: Chapter in "Theoretical Methods for Strongly Correlated Systems", edited by A. Avella and F. Mancini, Springer (2011), 31 pages, 5 figure

    Alu-Alu Recombination Underlying the First Large Genomic Deletion in GlcNAc-Phosphotransferase Alpha/Beta (GNPTAB) Gene in a MLII Alpha/Beta Patient

    Get PDF
    Mucolipidosis type II α/β is a severe, autosomal recessive lysosomal storage disorder, caused by a defect in the GNPTAB gene that codes for the α/β subunits of the GlcNAc-phosphotransferase. To date, over 100 different mutations have been identified in MLII α/β patients, but no large deletions have been reported. Here we present the first case of a large homozygous intragenic GNPTAB gene deletion (c.3435-386_3602 + 343del897) encompassing exon 19, identified in a ML II α/β patient. Long-range PCR and sequencing methodologies were used to refine the characterization of this rearrangement, leading to the identification of a 21 bp repetitive motif in introns 18 and 19. Further analysis revealed that both the 5' and 3' breakpoints were located within highly homologous Alu elements (Alu-Sz in intron 18 and Alu-Sq2, in intron 19), suggesting that this deletion has probably resulted from Alu-Alu unequal homologous recombination. RT-PCR methods were used to further evaluate the consequences of the alteration for the processing of the mutant pre mRNA GNPTAB, revealing the production of three abnormal transcripts: one without exon 19 (p.Lys1146_Trp1201del); another with an additional loss of exon 20 (p.Arg1145Serfs*2), and a third in which exon 19 was substituted by a pseudoexon inclusion consisting of a 62 bp fragment from intron 18 (p.Arg1145Serfs*16). Interestingly, this 62 bp fragment corresponds to the Alu-Sz element integrated in intron 18.This represents the first description of a large deletion identified in the GNPTAB gene and contributes to enrich the knowledge on the molecular mechanisms underlying causative mutations in ML II.This work was supported by FCT - project PIC/IC/83252/2007 (http://alfa.fct.mctes.pt/). Coutinho MF and Quental S received grants from the FCT (SFRH/BD/48103/2008; SFRH/BPD/64025/2009)
    corecore